Optimizing Centrifugal Pump Performance by Different Blade Configuration Patterns
Dalia Mohamed Sadek El-Gazzar,
Said Abdel-Aleem Farag Hawash
Issue:
Volume 3, Issue 1, January 2018
Pages:
1-14
Received:
9 January 2018
Accepted:
22 January 2018
Published:
23 February 2018
Abstract: Impeller blades configuration is directly affecting the performance of the pump. Using splitter blades are one of the techniques that used to improve hydraulic performance. These modifications in the blades design are greatly affecting the dynamic performance of the pump. Splitting the blade changes its center of mass and makes it out of alignment with the center of rotation leading to eccentricity problem. The present research elucidates the effect of changing the blades configurations on both of hydraulic and dynamic performances. The impeller under study was designed such that, its shape could be changed using the splitting technique. The conventional blade could be defined as a baseline reference. Moreover, three additional configurations resulted from splitting impeller blades is hydraulically and dynamically investigated. The changes in flow rates, heads, and vibrations associated with each case were recorded and compared with the conventional case. Therefore the main results were clearly indicated as, the highest value of the pump maximum efficiency recorded for 3rd configuration (as the middle and the outer parts staggered at 24° and 48° backward), where the lowest value for 1st configuration (as the inner part of the blade staggered at 24° forward). On the other hand, the results showed that, splitting the impeller blade's leads to uneven distribution of masses around the impeller thus leading to unbalance problem. Moreover, Vibration increased as the extent of blades locations deviations increased. Therefore, to avoid unbalance problem the splitting the impeller blades have to be in urgently and narrowest uses, such as to decrease cavitation occurrence, this may be the important recommendation.
Abstract: Impeller blades configuration is directly affecting the performance of the pump. Using splitter blades are one of the techniques that used to improve hydraulic performance. These modifications in the blades design are greatly affecting the dynamic performance of the pump. Splitting the blade changes its center of mass and makes it out of alignment ...
Show More
Experimental Study for Pressure Exchanger Applied to Brackish Water
Sameh Hassan Elbana,
Radwan Mostafa Kamal,
Ahmed Farouk Abdel Gawad
Issue:
Volume 3, Issue 1, January 2018
Pages:
15-26
Received:
25 February 2018
Accepted:
19 March 2018
Published:
11 April 2018
Abstract: Over the last ten years, reverse osmosis (RO) desalination technique became the most common and popular technology to desalinate brackish and seawater due to its low cost and simplicity. Great efforts have been conducted to reduce the energy consumption in reverse osmosis plants. One of the most efficient techniques is the pressure exchanger (PX) which utilizes the high pressure existing in waste concentrate to pressurize a part of feed brackish or seawater. The present research deals only with a pressure exchanger for brackish water. Such PX was manufactured specifically for the present work from simple materials such as cast iron and plastics to match brackish water technical and financial conditions. Results showed that PX for brackish water has a lower hydraulic efficiency than PX for seawater application. The present ultimate hydraulic efficiency is 25.6% compared to 95% for seawater PX manufactured by ERI (the single manufacturer in the Globe) with a higher mixing rate.
Abstract: Over the last ten years, reverse osmosis (RO) desalination technique became the most common and popular technology to desalinate brackish and seawater due to its low cost and simplicity. Great efforts have been conducted to reduce the energy consumption in reverse osmosis plants. One of the most efficient techniques is the pressure exchanger (PX) w...
Show More